Search results for "Viral evolution"

showing 10 items of 72 documents

Cryo-EM structure of ssDNA bacteriophage ΦCjT23 provides insight into early virus evolution.

2022

AbstractThe origin of viruses remains an open question. While lack of detectable sequence similarity hampers the analysis of distantly related viruses, structural biology investigations of conserved capsid protein structures facilitate the study of distant evolutionary relationships. Here we characterize the lipid-containing ssDNA temperate bacteriophage ΦCjT23, which infects Flavobacterium sp. (Bacteroidetes). We report ΦCjT23-like sequences in the genome of strains belonging to several Flavobacterium species. The virion structure determined by cryogenic electron microscopy reveals similarities to members of the viral kingdom Bamfordvirae that currently consists solely of dsDNA viruses wit…

/631/326/1321bacteriophagesviruksetcryoelectron microscopyevoluutioGeneral Physics and AstronomyelektronimikroskopiaDNA Single-Stranded/45/23FlavobacteriumGeneral Biochemistry Genetics and Molecular Biologybakteriofagit/631/45/535/1258/1259viral evolution/631/326/596/2554BacteriophagesMultidisciplinaryfylogenia/45fylogenetiikkaCryoelectron Microscopy/101/28articleGeneral Chemistryperimä1182 Biochemistry cell and molecular biologyCapsid Proteins
researchProduct

Local adaptation of plant viruses: lessons from experimental evolution.

2016

[EN] For multihost pathogens, adaptation to multiple hosts has important implications for both applied and basic research. At the applied level, it is one of the main factors determining the probability and severity of emerging disease outbreaks. At the basic level, it is thought to be a key mechanism for the maintenance of genetic diversity both in host and pathogen species. In recent years, a number of evolution experiments have assessed the fate of plant virus populations replicating within and adapting to one single or to multiple hosts species. A first group of these experiments tackled the existence of trade-offs in fitness and virulence for viruses evolving either within a single hos…

0106 biological sciences0301 basic medicineGeneralistsGenotypeLocal adaptationAcclimatizationGenetic FitnessBiology010603 evolutionary biology01 natural sciencesHost SpecificityPlant VirusesEvolution Molecular03 medical and health sciencesPathosystemGeneticsGenetic PleiotropyEcology Evolution Behavior and SystematicsLocal adaptationGenetic diversityExperimental evolutionVirulenceGenetic VariationGenetic PleiotropyVirus evolutionSpecialists030104 developmental biologyExperimental evolutionEvolutionary biologyViral evolutionHost rangeAntagonistic pleiotropyGenetic FitnessAdaptationMolecular ecology
researchProduct

Selection for Robustness in Mutagenized RNA Viruses

2007

Mutational robustness is defined as the constancy of a phenotype in the face of deleterious mutations. Whether robustness can be directly favored by natural selection remains controversial. Theory and in silico experiments predict that, at high mutation rates, slow-replicating genotypes can potentially outcompete faster counterparts if they benefit from a higher robustness. Here, we experimentally validate this hypothesis, dubbed the ‘‘survival of the flattest,’’ using two populations of the vesicular stomatitis RNA virus. Characterization of fitness distributions and genetic variability indicated that one population showed a higher replication rate, whereas the other was more robust to mut…

0106 biological sciencesCancer ResearchMutation ratelcsh:QH426-470In silicoMolecular Sequence DataPopulationBiologyVirus Replication010603 evolutionary biology01 natural sciencesVesicular stomatitis Indiana virusCell Line03 medical and health sciences0302 clinical medicineVirologyCricetinaeGeneticsAnimalsHumansSelection GeneticeducationMolecular BiologyGenetics (clinical)Ecology Evolution Behavior and Systematics030304 developmental biologyGeneticsEvolutionary Biology0303 health scienceseducation.field_of_studyNatural selectionRobustness (evolution)Genetics and GenomicsRNA virusbiology.organism_classification3. Good healthlcsh:GeneticsViral replicationMutagenesisViral evolutionViruses030217 neurology & neurosurgeryResearch ArticleHeLa Cells
researchProduct

Adaptation of turnip mosaic potyvirus to a specific niche reduces its genetic and environmental robustness

2020

Robustness is the preservation of the phenotype in the face of genetic and environmental perturbations. It has been argued that robustness must be an essential fitness component of RNA viruses owed to their small and compacted genomes, high mutation rates and living in ever-changing environmental conditions. Given that genetic robustness might hamper possible beneficial mutations, it has been suggested that genetic robustness can only evolve as a side-effect of the evolution of robustness mechanisms specific to cope with environmental perturbations, a theory known as plastogenetic congruence. However, empirical evidences from different viral systems are contradictory. To test how adaptation…

0106 biological sciencesMutation rateNicherobustness010603 evolutionary biology01 natural sciencesMicrobiologyGenome03 medical and health sciencesplant virusVirologythermal fluctuationsAcademicSubjects/MED00860experimental evolutionplastogenetic congruence030304 developmental biologyvirus evolution0303 health sciencesExperimental evolutionbiologyAcademicSubjects/SCI01130AcademicSubjects/SCI02285PotyvirusRobustness (evolution)biology.organism_classificationPhenotypeEvolutionary biologyViral evolutionmutagenesisResearch Article
researchProduct

Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes

2008

The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions favorable for mutation rate optimization, the evolved rates were invariably far below the optimu…

0106 biological sciencesMutation rateTime FactorsDigital organismsFitness landscapeQH301-705.5Biology010603 evolutionary biology01 natural sciencesCellular and Molecular Neuroscience03 medical and health sciences0302 clinical medicineGeneticsComputer SimulationBiology (General)Selection GeneticMolecular BiologyEcology Evolution Behavior and Systematics030304 developmental biology0303 health sciencesEvolutionary BiologyNatural selectionEcologyModels GeneticComputational Biology15. Life on landAdaptation PhysiologicalBiological EvolutionComputational Biology/Evolutionary ModelingReplication fidelityAsexual populationsEvolvabilityComputational Theory and MathematicsEvolutionary biologyModeling and SimulationViral evolutionMutation (genetic algorithm)MutationDNA Mismatch repairAdaptationAvida030217 neurology & neurosurgeryResearch Article
researchProduct

Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus

2019

Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV …

0106 biological sciencesinfection matrixPopulationPotyvirusVirulenceMetapopulation010603 evolutionary biology01 natural sciencesMicrobiology03 medical and health sciencesVirologyPlant virusTurnip mosaic virusResistance to infectionexperimental evolutioneducationPathogenhost population structure030304 developmental biologyvirus evolution0303 health sciencesExperimental evolutioneducation.field_of_studyGenetic diversitybiologyEcotypeGenetic heterogeneityEvolution of virulenceHost population structureresistance to infectionbiology.organism_classificationInfection matrixVirus evolutionExperimental evolutionInfectious disease (medical specialty)Evolutionary biologyViral evolutionResearch Articleevolution of virulence
researchProduct

The evolution, diversity and host associations of rhabdoviruses

2015

Metagenomic studies are leading to the discovery of a hidden diversity of RNA viruses, but new approaches are needed predict the host species these poorly characterised viruses pose a risk to. The rhabdoviruses are a diverse family of RNA viruses that includes important pathogens of humans, animals and plants. We have discovered the sequences of 32 new rhabdoviruses through a combination of our own RNA sequencing of insects and searching public sequence databases. Combining these with previously known sequences we reconstructed the phylogeny of 195 rhabdovirus sequences producing the most in depth analysis of the family to date. In most cases we know nothing about the biology of the viruses…

0106 biological sciencesvirusesZoologyvirushost shiftBiology010603 evolutionary biology01 natural sciencesMicrobiology03 medical and health sciences0302 clinical medicinePhylogeneticsVirologybiology.animalPlant virusarthropodHuman viromeMononegaviralesClade030304 developmental biology0303 health sciencesPhylogenetic treeHost (biology)ta1184mononegaviralesVertebrateRhabdoviridaebiology.organism_classification3. Good healthMetagenomicsEvolutionary biology030220 oncology & carcinogenesisViral evolutionta1181insectrhabdoviridae030217 neurology & neurosurgeryResearch Article
researchProduct

Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology

2019

Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformati…

0301 basic medicineArchaeal VirusesModels Molecularcorticoviridaeviruksetviruses030106 microbiologyPopulationlcsh:QR1-502lipid-containing bacteriophagevirus–host interactionReviewGenomeViruslcsh:MicrobiologybakteriofagitEvolution Molecular03 medical and health sciencesViral genome packagingplasmaviridaetectiviridaeVirologyBacteriophage PRD1Bacteriophageseducationvirus evolutioneducation.field_of_studyMembranesbiologyvirus-host interactionVirus Assemblyta1183Virionta1182Archaeal Virusescystoviridaebiology.organism_classificationVirology030104 developmental biologyInfectious DiseasesPlasmaviridaeCapsidViral evolutionDNA ViralCapsid ProteinsViruses
researchProduct

Virus found in a boreal lake links ssDNA and dsDNA viruses.

2017

Viruses have impacted the biosphere in numerous ways since the dawn of life. However, the evolution, genetic, structural, and taxonomic diversity of viruses remain poorly understood, in part because sparse sampling of the virosphere has concentrated mostly on exploring the abundance and diversity of dsDNA viruses. Furthermore, viral genomes are highly diverse, and using only the current sequence-based methods for classifying viruses and studying their phylogeny is complicated. Here we describe a virus, FLiP (Flavobacterium-infecting, lipid-containing phage), with a circular ssDNA genome and an internal lipid membrane enclosed in the icosahedral capsid. The 9,174-nt-long genome showed limite…

0301 basic medicineBACTERIALviruksetProtein ConformationviruseslipiditGenomechemistry.chemical_compoundProtein structureBINDINGVIRAL UNIVERSE1183 Plant biology microbiology virologyGeneticsMultidisciplinaryCRYOELECTRON MICROSCOPYBiological Sciencesboreaalinen vyöhykeCapsidViral evolutionCAPSID PROTEINLineage (genetic)030106 microbiologyGENOMESDNA Single-Strandedcryo-electron microscopyGenome ViralBiologyPROTEIN STRUCTURESjärvetFlavobacteriumVirusbakteriofagitlipids03 medical and health sciencesCapsidPhylogeneticsBacteriophage PRD1structuregenometa1182DNA VirusesDNAEVOLUTIONLakes030104 developmental biologychemistryperimäCapsid ProteinsCOMMUNITIESDNAProceedings of the National Academy of Sciences of the United States of America
researchProduct

The molecular epidemiology and evolutionary dynamics of influenza B virus in two Italian regions during 2010-2015: The experience of Sicily and Ligur…

2016

Molecular epidemiology of influenza B virus remained poorly studied in Italy, despite representing a major contributor to seasonal epidemics. This study aimed to reconstruct the phylogenetic relationships and genetic diversity of the hemagglutinin gene sequences of 197 influenza B strains circulating in both Southern (Sicily) and Northern (Liguria) Italy between 2010 and 2015. Upper respiratory tract specimens of patients displaying symptoms of influenza-like illness were screened by real-time RT-PCR assay for the presence of influenza B virus. PCR-positive influenza B samples were further analyzed by sequencing. Neighbor-joining phylogenetic trees were constructed and the amino-acid alignm…

0301 basic medicineInfluenza ViruslineagesHemagglutinin Glycoproteins Influenza VirusLiguriaSettore MED/42 - Igiene Generale E Applicatamolecular epidemiologyCatalysilcsh:Chemistryviral evolutionCladeinfluenza BSicilylcsh:QH301-705.5PhylogenySpectroscopyPhylogenetic treeinfluenza B; lineages; viral evolution; surveillance; molecular epidemiology; influenza-like illness; Sicily; Liguria; ItalyComputer Science Applications1707 Computer Vision and Pattern RecognitionGeneral MedicineBiological EvolutionComputer Science ApplicationsInfluenza B; Influenza-like illness; Italy; Liguria; Lineages; Molecular epidemiology; Sicily; Surveillance; Viral evolution; Biological Evolution; Genetic Variation; Hemagglutinin Glycoproteins Influenza Virus; Humans; Influenza B virus; Influenza Human; Italy; Molecular Epidemiology; Sicily; Phylogeny; Catalysis; Molecular Biology; Computer Science Applications1707 Computer Vision and Pattern Recognition; Spectroscopy; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic ChemistryInfluenza B; Influenza-like illness; Italy; Liguria; Lineages; Molecular epidemiology; Sicily; Surveillance; Viral evolution; Catalysis; Molecular Biology; Spectroscopy; Computer Science Applications1707 Computer Vision and Pattern Recognition; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic ChemistryItalyViral evolutionsurveillanceHumanHemagglutinin Glycoproteinsinfluenza-like illnessHemagglutinin (influenza)BiologyArticleCatalysisVirusInorganic Chemistry03 medical and health sciencesLineagePhylogeneticsInfluenza HumanHumansPhysical and Theoretical ChemistryMolecular BiologyInfluenza-like illneInfluenza-like illnessMolecular epidemiologyOrganic ChemistryGenetic VariationVirologyInfluenzaInfluenza B virus030104 developmental biologylcsh:Biology (General)lcsh:QD1-999biology.protein
researchProduct